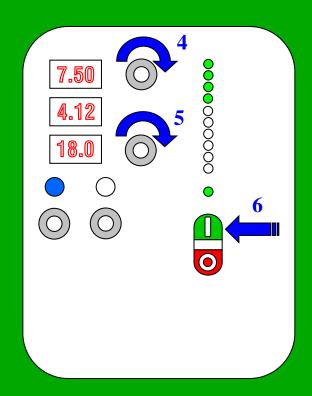
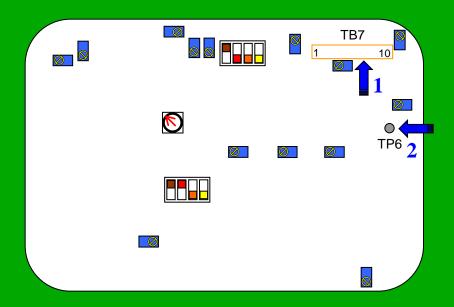

TROUBLE SHOOTING & FAULT FINDING

Inverter Heatsink Assembly



Inverter heatsink assy – PWM circuit test

- 1 Remove wire 22 from TB 2
- 2 Put SW2 into position 1 (local control)
- 3 Put SW1 A in up position (manual frequency)
- 4 Set power dial to half power
- 5 Set frequency dial to half
- 6 Press start button (interlocks must be closed & UTS must be OK)


NOTE:

With wire 22 disconnected K1 will not energise therefore no 3 phase will be present on the inverter heatsink assy

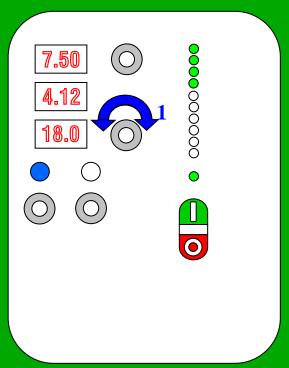
Inverter heatsink assy PWM circuit test

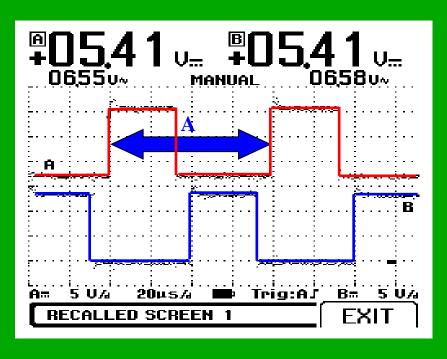
- 1 Connect oscilloscope probes to TB7 pins 5 / 6
- 2 Connect ground clips to TP6 (0v B)

CAUTION

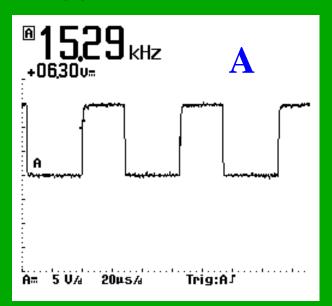
Ensure Oscilloscope ground has been removed.

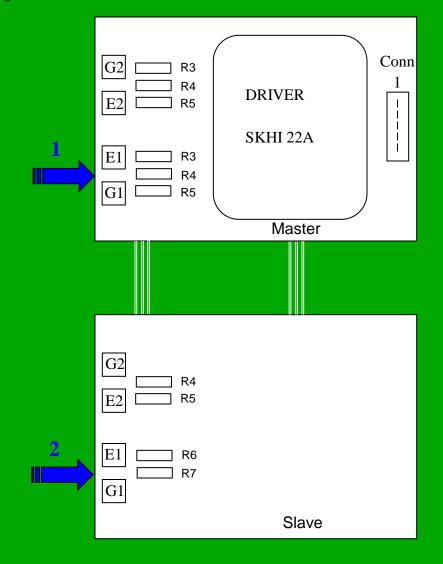
Inputs must be isolated from each other


If possible use a portable scope meter with isolated inputs i.e.


Fluke 123 scopemeter

Inverter heatsink assy – PWM circuit test (cont)

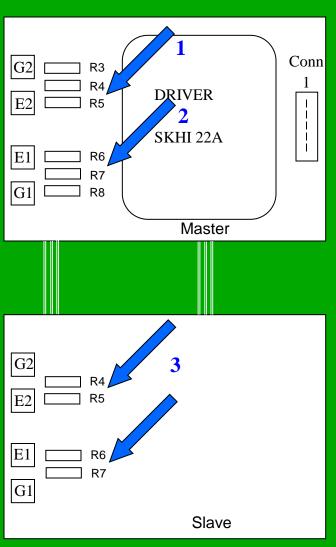

- 1 Adjust the frequency up & down. Frequency of pulses should change (A)
- If frequency stays fixed ensure generator is in manual frequency
- If no waveform check PWM circuit DWG A4.500001.05/06 paying attention to IC1,16
- As can be seen from the waveform the pulses are 180 degrees out of phase
- I waveform OK then go to pulse driver test



1/2 Inverter heatsink assy – Pulse driver test

- 1 Connect oscilloscope probe on G1 & ground clip to E1 on master driver PCB. Check for square wave (A)
- 2 Connect oscilloscope probe on G1 & ground clip to E1 on Slave driver PCB. Check for square wave (A).

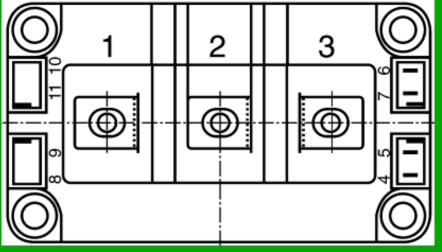
- If no waveform present go to next step 2/2
- If waveform present go to IGBT test



2/2 Inverter heatsink assy – Pulse driver test

- 1 Connect oscilloscope probe on right hand side of R4 & ground clip to E2 on master driver PCB. Check for square wave. Repeat for R5
- 2 Connect oscilloscope probe on right hand side of R6 & ground clip to E1 on master driver PCB. Check for square wave. Repeat for R7
- 3 Repeat above for slave PCB
- If no square wave present driver device (SKHI 22A) faulty Replace driver or complete driver PCB assembly
- ✓ If square wave OK, resistors failed Replace resistors and return to step 1/2

Resistor values					
Resistor	Generator				
	GX 100R	GX 150R			
R3, R8	15ΚΩ	15ΚΩ			
R4 - R7	56Ω	10Ω			



Inverter heatsink assy – IGBT test

NOTE: If testing IGBT's in inverter, DC smoothing capacitors must be removed prior to testing Use a Digital multi meter (diode function) to measure between the following points

IGBT types						
Generator	GX 100R	GX 150R				
IGBT	SKM 150	SKM 200				

OC – Open circuit

SC - Short circuit

FD – Forward diode (0.3v dc)

Red Lead +	Black Lead -	Result	Red Lead +	Black Lead -	Result
1	2	OC	1	5	SC
2	1	FD	1	4	OC
1	3	FD	7	1	FD
3	2	OC	6	1	OC
1	7	OC	5	1	SC
1	6	OC	4	1	OC